Article Dans Une Revue Proceedings of the VLDB Endowment (PVLDB) Année : 2022

EDA4SUM: Guided Exploration of Data Summaries

Aurélien Personnaz
  • Fonction : Auteur
Brit Youngmann
  • Fonction : Auteur
Sihem Amer-Yahia

Résumé

We demonstrate EDA4Sum, a framework dedicated to generating guided multi-step data summarization pipelines for very large datasets. Data summarization is the process of producing interpretable and representative subsets of an input dataset. It is usually performed following a one-shot process with the purpose of finding the best summary. EDA4Sum leverages Exploratory Data Analysis (EDA) to produce connected summaries in multiple steps, with the goal of maximizing their cumulative utility. A useful summary contains k individually uniform sets that are collectively diverse to be representative of the input data. EDA4Sum accommodates datasets with different characteristics by providing the ability to tune the weights of uniformity, diversity and novelty when generating multi-step summaries. We demonstrate the superiority of multi-step EDA summarization over single-step summarization for summarizing very large data, and the need to provide guidance to domain experts, by interacting with the VLDB'22 participants who will act as data analysts. The application is avilable at https://bit.ly/eda4sum_application.
Fichier principal
Vignette du fichier
EDA4SUM_Demo (1).pdf (3.19 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04239860 , version 1 (16-10-2023)

Identifiants

Citer

Aurélien Personnaz, Brit Youngmann, Sihem Amer-Yahia. EDA4SUM: Guided Exploration of Data Summaries. Proceedings of the VLDB Endowment (PVLDB), 2022, 15 (12), pp.3590-3593. ⟨10.14778/3554821.3554851⟩. ⟨hal-04239860⟩
42 Consultations
63 Téléchargements

Altmetric

Partager

More