Communication Dans Un Congrès Année : 2019

An Efficient Greedy Algorithm for Sequence Recommendation

Résumé

Recommending a sequence of items that maximizes some objective function arises in many real-world applications. In this paper, we consider a utility function over sequences of items where sequential dependencies between items are modeled using a directed graph. We propose EdGe, an efficient greedy algorithm for this problem and we demonstrate its effectiveness on both synthetic and real datasets. We show that EdGe achieves comparable recommendation precision to the state-of-the-art related work OMEGA, and in considerably less time. This work opens several new directions that we discuss at the end of the paper.
Fichier principal
Vignette du fichier
dexa.pdf (708.74 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-02347064 , version 1 (29-11-2020)

Identifiants

Citer

Idir Benouaret, Sihem Amer-Yahia, Senjuti Basu Roy. An Efficient Greedy Algorithm for Sequence Recommendation. DEXA 2019: International Conference on Database and Expert Systems Applications, Aug 2019, Linz, Austria. pp.314-326, ⟨10.1007/978-3-030-27615-7_24⟩. ⟨hal-02347064⟩
102 Consultations
189 Téléchargements

Altmetric

Partager

More