Communication Dans Un Congrès Année : 2023

On the stability, correctness and plausibility of visual explanation methods based on feature importance

Résumé

In the field of Explainable AI, multiples evaluation metrics have been proposed in order to assess the quality of explanation methods w.r.t. a set of desired properties. In this work, we study the articulation between the stability, correctness and plausibility of explanations based on feature importance for image classifiers. We show that the existing metrics for evaluating these properties do not always agree, raising the issue of what constitutes a good evaluation metric for explanations. Finally, in the particular case of stability and correctness, we show the possible limitations of some evaluation metrics and propose new ones that take into account the local behaviour of the model under test.
Fichier principal
Vignette du fichier
main.pdf (662.14 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

cea-04256974 , version 1 (24-10-2023)

Identifiants

Citer

Romain Xu-Darme, Jenny Benois-Pineau, Romain Giot, Georges Quénot, Zakaria Chihani, et al.. On the stability, correctness and plausibility of visual explanation methods based on feature importance. CBMI'23 - the 20th International Conference on Content-based Multimedia Indexing, Sep 2023, Orléans, France. pp.119-125, ⟨10.1145/3617233.3617257⟩. ⟨cea-04256974⟩
191 Consultations
119 Téléchargements

Altmetric

Partager

More