Parametrization and convergence of a primal-dual block-coordinate approach to linearly-constrained nonsmooth optimization - Laboratoire Informatique d'Avignon
Pré-Publication, Document De Travail Année : 2024

Parametrization and convergence of a primal-dual block-coordinate approach to linearly-constrained nonsmooth optimization

Résumé

This note is concerned with the problem of minimizing a separable, convex, composite (smooth and nonsmooth) function subject to linear constraints. We study a randomized block-coordinate interpretation of the Chambolle-Pock primal-dual algorithm, based on inexact proximal gradient steps. A specificity of the considered algorithm is its robustness, as it converges even in the absence of strong duality or when the linear program is inconsistent. Using matrix preconditiong, we derive tight sublinear convergence rates with and without duality assumptions and for both the convex and the strongly convex settings. Our developments are extensions and particularizations of original algorithms proposed by Malitsky (2019) and Luke and Malitsky (2018). Numerical experiments are provided for an optimal transport problem of service pricing.
Fichier principal
Vignette du fichier
WP.pdf (323.11 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04680693 , version 1 (29-08-2024)

Identifiants

Citer

Olivier Bilenne. Parametrization and convergence of a primal-dual block-coordinate approach to linearly-constrained nonsmooth optimization. 2024. ⟨hal-04680693⟩
53 Consultations
12 Téléchargements

Altmetric

Partager

More